SENSORES DE IMAGEM CMOS

José Gabriel Rodríguez Carneiro Gomes EPOLI/DEL e COPPE/PEE Universidade Federal do Rio de Janeiro

CONTEÚDO

Sensor de Imagem CMOS

Pixel

Processamento de Imagens no Plano Focal

Conclusões e Referências

SENSOR DE IMAGENS CMOS

Diagrama de blocos de um sistema eletrônico básico de imagem

SENSOR DE IMAGENS CMOS

SENSOR DE IMAGENS CMOS

Passive-pixel sensor (1960)

Charge-coupled devices (1970) – Willard S. Boyle e George E. Smith, Prêmio Nobel 2009

Active-pixel sensor (final dos anos 80) – 3T, logarítmico

• 4T (anos 90)

Processamento de imagens no plano focal (meados dos anos 90, anos 2000)

FOTODIODO

c:stp:(b-stp); y=zeros(size(x)); exp(x(h)/0.026)-1); y(h) **.**, **.** h=find(x>:

 plot(x,y-(5e-7),'b-','LineWidth',3); axis([-9 1 -2e-6 2e-6]);

PIXEL 3T

Tecnologia 0.35 μ m, C = 10 fF, I_{ph} = 50 pA, I_B = 2 μ A

3T E AMOSTRAGEM DUPLA CORRELACIONADA

Conhecida pela sigla CDS (Correlated Double-Sampling)

PIXEL LOGARÍTMICO

Operação em modo "sub-threshold":

 $I_{\rm d} pprox 1~{\rm nA}$

$$I_{\rm d} = \alpha \exp\left((V_{\rm dd} - V_{\rm pd})/\beta\right)$$

$$V_{\rm PD} = V_{\rm DD} - \beta \ln \left(I_{\rm D} / \alpha \right)$$

PIXEL LOGARÍTMICO

PIXEL "4T" SEM PPD

Tecnologia 0.35 $\mu m,\,C_{PD}$ = 10 fF, I_{ph} = 20 pA, C_{FD} = 50 fF, I_{B} = 2 μA

PIXEL "4T" SEM PPD

BOOSTING (TAMBÉM PARA PIXEL 3T)

BOOSTING (TAMBÉM PARA PIXEL 3T)

CHARGE-COUPLED DEVICE (CCD)

Capacitor MIS (metal-insulator-silicon):

Transferência de carga (CCD de três fases):

Implante p⁺ aumenta enormemente a eficiência da transferência de carga:

p-sub

No PPD, a transferência de carga é completa (todo o poço é esvaziado):

No fotodiodo comum (n-well/p-sub), ocorre perda de portadoras de carga devido a estados de interface:

4T E AMOSTRAGEM DUPLA CORRELACIONADA

PIXEL EM MODO DE CORRENTE

м1	11	12	1	0	MODN V	v=1u	L=2	2u				
м2	11	1	2	11	MODP V	v=1u	L=3	8.7u				
мЗ	2	2	0	0	MODN V	<i>N</i> =2u	L=2	2u				
м4	9	3	0	0	MODN V	v=2u	L=2	2u				
м5	10	4	0	0	MODN V	N=2u	L=2	2u				
м6	11	9	9	11	MODP V	v=1u	L=2	2u				
м7	11	9	10	11	MODP V	v=1u	L=2	2u				
м8	17	10	10	11	MODP V	<i>N</i> =4u	L=2	2u				
м9	2	13	3	0	MODN V	√=1u	L=.	35u				
м10	3	14	3	0	MODN V	N=0.5	Su L	.=.3!	5u			
м11	2	14	3	11	MODP V	√=1u	L=.	35u				
м12	3	13	3	11	MODP V	N=0.5	Su l	.=.3!	5u			
м13	2	15	4	0	MODN V	√=1u	L=.	35u				
м14	4	16	4	0	MODN V	N=0.5	Su l	.=.3!	5u			
м15	2	16	4	11	MODP V	√=1u	L=.	35u				
м16	4	15	4	11	MODP V	N=0.5	Su L	.=.3!	5u			
СР	1	0			10f							
IP	1	0			200p							
VDD	11	0			3.3							
VR	12	0			PULSE	03.	3	10u	100n	100n	10u	240u
VP1	13	0			PULSE	03.	3	10u	100n	100n	20u	240u
VP1b	14	0			PULSE	3.3	0	10u	100n	100n	20u	240u
VP2	15	0			PULSE	03.	3	10u	100n	100n	210u	240u
VP2b	16	0			PULSE	3.3	0	10u	100n	100n	210u	240u
VDD2	17	0			3.3							

PIXEL EM MODO DE CORRENTE

PIXEL PULSADO

PIXEL PULSADO

PROCESSAMENTO DE IMAGENS NO PLANO FOCAL

CONVERSÃO A/D NO PIXEL

Saída de

CONCLUSÕES

Pixels básicos: 3T, logarítmico, 4T, modo de corrente, pulsado

Processamento de imagens no plano focal (tipos)

"Address-event representations" (AER), processamento de sinais "biomórficos"

Visão computacional e redes neurais, aproveitando o paralelismo intrínseco

REFERÊNCIAS

• J. Ohta, Smart CMOS Image Sensors and Applications, CRC Press, 2007.

• J. Nakamura (Editor), Image Sensors and Signal Processing for Digital Still Cameras, CRC Press, 2005.

• G. C. Holst e T. S. Lomheim, CMOS/CCD Sensors and Camera Systems, JCD Publishing and SPIE Press, 2007.

• A. N. Belbachir (Editor), Smart Cameras, Springer, 2010.

• T. Kuroda, Essential Principles of Image Sensors, CRC Press, 2017.

• S. Kleinfelder, S. Lim, X. Liu e A. El Gamal, A 10000 Frames/s CMOS Digital Pixel Sensor, IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 2049-2059, Dez. 2001.

• J. P. G. Ruiz, A Comparative Analysis of Dynamic Vision Sensors using 180 nm CMOS Technology, Dissertação de Mestrado, PEE/COPPE/UFRJ, 2017.

OBRIGADO!

gabriel@pads.ufrj.br

PROCESSAMENTO DE IMAGENS NO PLANO FOCAL

José Gabriel Rodríguez Carneiro Gomes EPOLI/DEL e COPPE/PEE Universidade Federal do Rio de Janeiro

CONTEÚDO

Pixel em Modo de Corrente

Operações Básicas

Aplicações e Exemplos

Tendências Futuras

PIXEL EM MODO DE CORRENTE

• Representação de sinais em modo adequado para execução de operações simples

PIXEL EM MODO DE CORRENTE

WINNER TAKES ALL

VALOR ABSOLUTO

PRODUTO INTERNO E COMPARADOR

TRANSFORMADA LINEAR

 $x_4 = abs(y_1 + y_2 + \ldots + y_{16})$

 $b_1(n) = V_{\rm dd}(0.5x_1(n) + 0.5x_2(n) + 0.5x_4(n) > t_{14})$

VQ COM RESTRIÇÃO DE ENTROPIA (ECVQ)

3.....

 $i(n) = \operatorname{argmin}_k(d(\mathbf{x}(n), \mathbf{y}_k) + \lambda l_k) = \operatorname{argmax}_k(-\mathbf{x}^T(n)\mathbf{x}(n) + 2\mathbf{x}^T\mathbf{y}_k - \mathbf{y}_j^T\mathbf{y}_k - \lambda l_k)$

ECVQ COM RESTRIÇÃO DE COMPLEXIDADE

DIFFERENTIAL PULSE-CODE MODULATION

REPRESENTAÇÃO DOMÍNIO TRANSFORMADA

1	2	3	4
+1 +1 +1 +1	+2 +1 -1 -2	+1 -1 -1 +1	+1 -2 +2 -1
+1 +1 +1 +1	+2 +1 -1 -2	+1 -1 -1 +1	+1 -2 +2 -1
+1 +1 +1 +1	+2 +1 -1 -2	+1 -1 -1 +1	+1 -2 +2 -1
+1 +1 +1 +1	+2 +1 -1 -2	+1 -1 -1 +1	+1 -2 +2 -1
5	6	7	8
+2 +2 +2 +2	+4 +2 -2 -4	+2 -2 -2 +2	+2 -4 +4 -2
+1 +1 +1 +1	+2 +1 -1 -2	+1 -1 -1 +1	+1 -2 +2 -1
-1 -1 -1 -1	-2 -1 +1 +2	-1 +1 +1 -1	-1 +2 -2 +1
-2 -2 -2 -2	-4 -2 +2 +4	-2 +2 +2 -2	-2 +4 -4 +2
9	10	11	12
9 +1 +1 +1 +1	10 +2 +1 -1 -2	11 +1 -1 -1 +1	12 +1 -2 +2 -1
9 +1 +1 +1 +1 -1 -1 -1 -1	10 +2 +1 -1 -2 -2 -1 +1 +2	+1 -1 -1 +1 -1 +1 +1 -1	12 +1 -2 +2 -1 -1 +2 -2 +1
9 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1	10 +2 +1 -1 -2 -2 -1 +1 +2 -2 -1 +1 +2	+1 -1 -1 +1 -1 +1 +1 -1 -1 +1 +1 -1	+1 -2 +2 -1 -1 +2 -2 +1 -1 +2 -2 +1
9 +1 +1 -1 -1 -1 -1 -1 -1 +1 +1	+2 +1 -1 -2 -2 -1 +1 +2 -2 -1 +1 +2 +2 +1 -1 -2	+1 -1 -1 +1 -1 +1 +1 -1 -1 +1 +1 -1 +1 -1 -1 +1	12 +1 -2 +2 -1 -1 +2 -2 +1 -1 +2 -2 +1 +1 -2 +2 -1
9 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 13	10 +2 +1 -1 -2 -2 -1 +1 +2 -2 -1 +1 +2 +2 +1 -1 -2 14 -2	11 +1 -1 -1 +1 -1 +1 +1 +1 -1 +1 +1 1 +1 5	12 +1 -2 +2 -1 -1 +2 -2 +1 -1 +2 -2 +1 +1 -2 +2 -1 +1 -3 +2 -1
9 +1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	+2 +1 -1 -2 -2 -1 +1 +2 -2 +1 +1 +2 +2 +1 -1 -2 -14 +2 +1 -1 -2	11 +1 -1 +1 -1 +1 +1 -1 +1 +1 +1 +1 +1 +1 -1 +1 15 +1 -1	+1 -2 +2 -1 -1 +2 -2 +1 -1 +2 -2 +1 +1 -2 +2 -1 +1 -2 +2 -1
9 +1 +1 +1 +1 -1 -1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 13 +1 +1 +1 +1 -2 -2 -2 -2 -2	10 +2 +1 -1 -2 -2 -1 +1 +2 -2 -1 +1 +2 +2 +1 -1 -2 +2 +1 -1 -2 +4 +1 -2 -2	11 +1 -1 +1 -1 +1 +1 -1 +1 +1 +1 -1 +1 +1 -1 -1 +1 -1 -1 +1 -1 +1	12 +1 -2 +2 -1 -1 +2 -2 +1 -1 +2 -2 +1 +1 -2 +2 -1 -1 -2 +2 -1
9 +1 +1 +1 -1 -1 -1 -1 -1 -1 +1 +1 +1 +1 +1 +1 -2 -2 -2 +2 +2 +2	+1 -1 -2 -2 -1 +1 +2 -2 -1 +1 +2 +2 +1 -1 -2 +2 +1 -1 -2 +2 +1 -1 -2 +4 +2 -2 -4	$\begin{array}{c c c c c c c } & -1 & -1 & +1 \\ \hline +1 & -1 & +1 & -1 \\ -1 & +1 & +1 & -1 \\ +1 & -1 & -1 & +1 \\ \hline & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	+1 -2 +2 -1 -1 +2 -2 +1 -1 +2 -2 +1 +1 -2 +2 -1 +1 -2 +2 -1 +1 -2 +2 -1 +1 -2 +2 -1 +1 -2 +2 -1

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

QUANTIZAÇÃO VETORIAL

IMPLEMENTAÇÃO DO VQ

0.8

0.6

0.4

ײ

LAYOUT COMPLETO

MODULATION TRANSFER FUNCTION

PROPRIEDADES GLOBAIS DO CHIP

Technology AMS CMOS 0.35 μ m Opto **Chip Area** $1.61 \text{ mm} \times 1.28 \text{ mm}$ Array Size 32×32 **Block Area** $150 \ \mu m \times 150 \ \mu m$ Pixel Area $37.5 \ \mu m \times 37.5 \ \mu m$ $10 \ \mu m \times 10 \ \mu m$ Photodiode Area 7% Fill Factor 3.3 V Power Supply **Power Consumption** 37 mW maximum (white image) **Integration Period** $800 \ \mu s$ **Conversion/Read-Out Time** 1 ms (one block-row) Achievable Frame Rate 125 Hz FPN 7% **Temporal Noise** 4% Spatial Bandwidth 2 cycles/cm Input Dynamic Range approx. 40 lux to 400 lux Data Rate below 0.94 bpp PSNR 18 dB

CALIBRAÇÃO DE DICIONÁRIO

CALIBRAÇÃO DE DICIONÁRIO

Target

Original

All

Specific

CALIBRAÇÃO DE DICIONÁRIO

Decoded Image	Except	All	Original
Bike	0.0871	0.0852	0.0989
Bird	0.0503	0.0501	0.0632
Goldhill	0.0288	0.0284	0.0371
Lena	0.0303	0.0295	0.0392
Peppers	0.0235	0.0224	0.0269
Steve	0.0663	0.0659	0.0744
Vader	0.1049	0.1022	0.1073

Diagrama de Blocos 0.18 µm; Cascode Current Mirror Pixels

TABLE I

COMPARISON BETWEEN FIRST AND SECOND GENERATION CHIPS.

	1 st generation	2^{nd} generation
Bit rate	0.94 bpp	1.13 bpp
Transform coeffs.	4	5
Sign bits	4	5
VQ bits	7	9
Fab. process	AMS 0.35 μ m Opto	IBM 0.18 μ m
Transistor count	607 per block	833 per block
Pixel area	$37.5 \ \mu m \times 37.5 \ \mu m$	$27.2 \ \mu m \times 27.2 \ \mu m$
Photodiode area	$10 \ \mu \mathrm{m} imes 10 \ \mu \mathrm{m}$	$10 \ \mu \mathrm{m} imes 10 \ \mu \mathrm{m}$
Fill factor	7.1 %	13.5 %
Chip area	$2.4 \text{ mm} \times 2.1 \text{ mm}$	$2.8 \text{ mm} \times 2.8 \text{ mm}$
Resolution	32×32	64×64
DPCM $\hat{s}(1)$	0.0	7.5
Power supply	3.3 V	1.8 V

ANÁLISE DE COMPLEXIDADE

- Row selection logic for 15 output bits

- 5 absolute-value circuits

- 5 XNOR gates

ANÁLISE DE COMPLEXIDADE

ANÁLISE DE COMPLEXIDADE

	B_1	B_2	B_3	B_4	B_5	B_6	B_7	B_8	B_9	
01	0	х	х	х	х	х	х	х	х	1
02	1	0	0	х	х	х	х	х	х	3
03	1	0	1	0	х	х	х	х	х	- 4
04	1	0	1	1	1	х	х	х	х	- 5
05	1	1	0	0	1	х	х	х	х	5
06	1	0	1	1	0	х	х	х	х	- 5
07	1	1	0	0	0	х	х	х	х	- 5
08	1	1	1	0	0	1	х	х	х	6
09	1	1	0	1	0	0	х	х	х	6
10	1	1	1	0	1	1	х	х	х	6
11	1	1	0	1	1	1	х	х	х	6
12	1	1	0	1	1	0	х	х	х	6
13	1	1	1	0	1	0	х	х	х	6
14	1	1	0	1	0	1	х	х	х	6
15	1	1	1	0	0	0	х	х	х	6
16	1	1	1	1	0	1	0	х	x	7
17	1	1	1	1	0	1	1	х	х	7
18	1	1	1	1	0	0	1	х	х	7
19	1	1	1	1	0	0	0	х	х	7
20	1	1	1	1	1	0	0	х	х	7
21	1	1	1	1	1	1	0	х	х	7
22	1	1	1	1	1	0	1	х	х	7
23	1	1	1	1	1	1	1	0	х	8
24	1	1	1	1	1	1	1	1	1	9
25	1	1	1	1	1	1	1	1	0	9

GAUSSIAN PYRAMID TIME/ENERGY ANALYSIS

ſ	2	1	20	0	0	0	1	2
	$\overline{7}$	6	13	15	14	34	6	7
	9	3	40	20	23	13	44	5
	0	4	16	100	11	1	80	15
	10	12	30	104	14	1	50	31
	18	8	3	7	1	0	17	14
	20	107	71	11	12	10	60	19
	7	10	21	9	2	24	1	0

			_				
4	8	8	12	12	8	8	4
4	16	16	20	20	16	16	20
4	16	16	20	20	16	16	20
8	24	24	24	24	20	20	32
8	24	24	24	24	20	20	32
24	28	28	20	20	16	16	24
24	28	28	20	20	16	16	24
36	32	32	20	20	16	16	20

$\begin{array}{c} 4 & 4 \\ {}^{p_{i-1,j-1}} \\ 4 & 4 \end{array}$	$\begin{array}{c} 12 \\ {}^{p_{i-1,j}} \\ 12 \\ 12 \end{array} \begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} 12 \\ {}^{p_{i-1,j+1}} \\ 12 \\ 12 \end{array} \begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c}4&4\\ {}^{p_{i-1,j+2}}\\4&4\end{array}$
$\begin{smallmatrix}4&4\\p_{i,j-1}\\4&4\end{smallmatrix}$	$\begin{array}{c}44\\44\\44\end{array}\begin{array}{c}44\\44\end{array}$	$\begin{array}{c} 12 \\ {}^{p_{i,j+1}} \\ 12 \end{array} \begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} 36 & 36 \\ {}^{p_{i,j+2}} \\ 36 & 36 \end{array}$
$\begin{array}{c} 12 & 12 \\ {}^{p_{i+1,j-1}} \\ 12 & 12 \end{array}$	$\begin{array}{c} 36 & 36 \\ {}^{p_{i+1,j}} \\ 36 & 36 \end{array}$	$\begin{array}{c}4&4\\{}^{p_{i+1,j+1}}\\4&4\end{array}$	$\begin{array}{c} 28 & 28 \\ {}^{p_{i+1,j+2}} \\ 28 & 28 \end{array}$
$\begin{array}{c} 36 & 36 \\ {}^{p_{i+2,j-1}} \\ 36 & 36 \end{array}$	$\frac{28}{{}^{p_{i+2,j}}}\frac{28}{28}\frac{28}{28}$	$\begin{array}{c c}12 & 12\\ {}^{p_{i+2,j+1}}\\12 & 12\end{array}$	$\begin{array}{c} 20 & 20 \\ {}^{p_{i+2,j+2}} \\ 20 & 20 \end{array}$

8	8	14	14	14	14	12	12
8	8	14	14	14	14	12	12
13	13	21	21	20	20	22	22
13	13	21	(21)	20	20	22	22
21	21	24	24	20	20	23	23
21	21	24	24	20	20	23	23
30	30	$\overline{25}$	25	18	18	19	19
30	30	25	25	18	18	19	19

GAUSSIAN PYRAMID TIME/ENERGY ANALYSIS

GAUSSIAN PYRAMID TIME/ENERGY ANALYSIS

HIGH DYNAMIC RANGE IMAGING

HIGH DYNAMIC RANGE IMAGING

Raw Schlick Rahman WB + YTM F. Plane RGB F. Plane Green

DIFFUSIVE FILLING-IN

DEEP LEARNING – CLASS ACTIVATION MAPS

Bbox

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

automobile airplane

Bbox

0.0 0.2 0.4 0.6 0.8 1.0

Class probabilities

0.0 0.2 0.4 0.6 0.8 1.0

Image idx: 3777

Class probabilities

truck

ship

horse

frog

dog

deer

cat

bird

truck

ship |

horse

frog

deer

cat

bird

airplane 💻

automobile

dog 🔳

Predicted: horse

Thresolded map

airplane

truck

ship

horse |

frog

dog

deer

cat

bird

automobile

airplane

0.0 0.2 0.4 0.6 0.8 1.0

Bbox

Bbox

truck

Image idx: 7849

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Thresolded map

DEEP LEARNING – NEURAL STYLE TRANSFER

DEEP LEARNING - NEURAL STYLE TRANSFER

OUTRAS IDÉIAS

• Compressão de imagens no plano focal aparece em diversas outras referências. Uma tabela

comparativa é dada em [Oliveira, 2013].

• Há também filtragem (convoluções), detecção de bordas, estimação de movimento, visão

estéreo, reconhecimento de padrões.

Abordagens (menos ou mais recentes) à visão computacional utilizando sinais pulsados.

TENDÊNCIAS PARA O FUTURO

- High dynamic range imaging
- Compressive sensing
- Z. Chen, A Primer on Neural Signal Processing, IEEE CAS Magazine, First Quarter 2017
- M. Ahmed and B. K. Sujatha, A review on methods, issues and challenges in neuromorphic engineering, em Anais IEEE ICCSP 2015
- A. Yousefzadeh, T. Masquelier, T. Serrano-Gotarredona, and B. Linares-Barranco, Hardware implementation of convolutional STDP for on-

line visual feature learning, em Anais ISCAS 2017

• S. Walz, J. Miller and R. Tetzlaff, Image classification by cellular nonlinear networks, em Anais ISCAS 2017

REFERÊNCIAS

• F. D. V. R. Oliveira, H. L. Haas, J. G. R. C. Gomes e A. Petraglia. CMOS Imager with Focal-Plane Analog Image Compression Combining DPCM and VQ. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 5, pp. 1331-1344, Mai. 2013.

B. B. Cardoso, F. D. V. R. Oliveira, J. G. R. C. Gomes e T. M. F. Lopes. CMOS Imager with Current-Mode Sub-Band Image Coding at the Focal Plane. Springer Analog Integrated Circuits and Signal Processing, vol. 85, no. 1, pp. 91-106, Out. 2015.

• F. D. V. R. Oliveira, T. M. F. Lopes, J. G. R. C. Gomes, F. A. P. Barúqui e A. Petraglia, Focal-plane image encoder with cascode current mirrors and increased vector quantization bit rate, em Anais 29th Symposium on Integrated Circuits and Systems Design (SBCCI), pp. 1-6, 2016.

• R. M. Estêvão Filho, J. G. R. C. Gomes e A. Petraglia. Codebook Calibration Method for Vector Quantizers Implemented at the Focal Plane of CMOS Imagers. IEEE Trans. Circuits and Systems for Video Technology, vol. 26, no. 4, pp. 750-761, Abr. 2016.

• J. Fernández-Berni, F. D. V. R. Oliveira, R. Carmona-Galán e A. Rodríguez-Vázquez, Image sensing scheme enabling fully-programmable light adaptation and tone mapping with a single exposure, IEEE Sensors J., vol. 16, no. 13, pp. 5121-5122, Jul. 2016.

• F. D. V. R. Oliveira, J. G. R. C. Gomes, J. Fernández-Berni, R. Carmona-Galán, Rocío del Río e A. Rodríguez-Vázquez, Gaussian pyramid: comparative analysis of hardware architectures, IEEE Trams. Circuits and Systems I: regular Papers, vol. 64, no. 9, pp. 2308-2321, Set. 2017.

• G. N. Santos, Um Estudo sobre o Mecanismo Cortical do Diffusive Filling-In em Silício, Tese de Doutorado, PEE/COPPE/UFRJ, 2016.

• R. M. Estevão Filho, A Study on Deep Convolutional Neural Networks for Computer Vision Applications, Dissertação de Mestrado, PEE/COPPE/UFRJ, 2017.

AGRADECIMENTOS

FAPERJ

CNPq

CAPES

Organizadores 2nd CASS Seasonal School

Professores: Antonio e Mariane Petraglia,

Carlos F. T. Soares, Fernando A. P. Barúqui,

Joarez B. Monteiro

Alunos do PADS/COPPE/UFRJ

OBRIGADO!

gabriel@pads.ufrj.br